Transforming Tourist Behavior in the Post-Pandemic Era : Big Data Insights from Jakarta’s Kotatua Heritage site

Main Article Content

Fauziah Eddyono
Firnandi Gufron
Budi Prasetiya

Abstract

The COVID-19 pandemic has profoundly reshaped tourist behavior, particularly within urban heritage destinations. This study explores the behavioural transformation of visitors to the Kotatua Jakarta heritage district before and after the pandemic, employing a descriptive quantitative approach grounded in big data analytics. A dataset of 692 user-generated reviews was extracted from multiple digital platforms—Tripadvisor, Google Review, Google Insight, and Traveloka—covering the period from 2016 to 2023. Structured data were analysed using SPSS, while unstructured textual data were processed through natural language processing techniques via RapidMiner and Python libraries.


Findings indicate marked shifts in tourist segmentation, travel motivations, attraction preferences, visitation patterns, and spending behaviour. Post-pandemic tourists were predominantly local residents from Greater Jakarta, with Gen Z and Millennials comprising the majority. A transition was observed from educational motivations to light recreational and visual experiences such as photography and sightseeing. Average visit durations decreased, yet revisit intentions increased, while overall expenditure per visitor declined significantly. These trends reflect a growing demand for proximity-based, flexible, and value-conscious travel.


The study underscores the imperative for destination management organisations (DMOs) to adopt data-driven strategies that prioritise digital engagement, open-air spatial design, and locally responsive tourism experiences. It further advocates for the sustained integration of big data analytics to support adaptive, inclusive, and sustainable governance of heritage tourism in the evolving post-pandemic context.

Article Details

Section
Articles

References

Babbie, E. (2020). The Practice of Social Research (15th ed.). Cengage Learning.

BPS. (2023). Statistik Kunjungan Wisatawan Mancanegara 2024.

Budisetyorini, E. (2019). Analisis Daya Tarik Wisata Heritage di Kawasan Kota Tua Jakarta. Jurnal Destinasi Pariwisata, 7(2), 102–112.

Chhabra, D. (2010). Value co-creation and destination branding: A case of heritage tourism. Journal of Travel & Tourism Marketing, 27(5), 466–480. https://doi.org/10.1080/10548408.2010.514060

Crespo, A. G. (2011). A semantic-based expert system to provide recommendations in tourism. Expert Systems with Applications, 38(10), 13310–13319.

Creswell, J. W. (2014). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches. Sage.

Crouch, G. I., & Ritchie, J. R. B. (1999). Tourism, competitiveness, and societal prosperity. Journal of Business Research, 44(3), 137–152.

Dina, N. Z. (2020). Tourist sentiment analysis on Tripadvisor using text mining. African Journal of Hospitality, Tourism and Leisure, 9(3).

Eddyono, F., Darusman, D., Sumarwan, U., & Sunarminto, T. (2025). Tourism Competitiveness, Tourist Foreign Arrival And Non-Tax State Revenue In National Parks In Indonesia. Indonesian Journal of Forestry Research, 9(2), 165–184.

Fan, D. X. (2021a). Post-pandemic travel behavior shifts: Evidence from Asia. Journal of Sustainable Tourism, 29(8), 1034–1050.

Fan, D. X. (2021b). Tourist behavioral response to the Covid-19 pandemic. Journal of Sustainable Tourism, 29(7), 1031–1048.

Fan, D. X. F., Qiu, R. T. R., & Liu, B. (2021). Understanding tourists’ environmental behavior: A self-determination theory perspective. Journal of Sustainable Tourism, 29(5), 755–773.

Fuchs, M., Höpken, W., & Lexhagen, M. (2014). Big data analytics for knowledge generation in tourism destinations. Journal of Destination Marketing & Management, 3(4), 198–209.

Gössling, S., Scott, D., & Hall, C. M. (2021). Pandemics, tourism and global change: a rapid assessment of COVID-19. Journal of Sustainable Tourism, 29(1), 1–20. https://doi.org/10.1080/09669582.2020.1758708

Gretzel, U., Fuchs, M., Baggio, R., Hoepken, W., Law, R., Neidhardt, J., & Xiang, Z. (2020). E-Tourism beyond COVID-19: A call for transformative research. Information Technology & Tourism, 22(2), 187–203. https://doi.org/10.1007/s40558-020-00181-3

Gretzel, U., Sigala, M., Xiang, Z., & Koo, C. (2020). Smart tourism in post-COVID era. Tourism Management, 79, 104074.

Hakim, I. N., Eddyono, F., & Abdullah, S. (2022). Intensi Perilaku Berwisata Alam Masyarakat DKI Jakarta Pasca Vaksinasi Covid-19. Jurnal Kepariwisataan: Destinasi, Hospitalitas Dan Perjalanan, 6(2), 179–202.

Khan, M. I. (2022). Tourism recovery in the post-pandemic era. Tourism Management Perspectives, 43, 100999.

Kim, H., & Prideaux, B. (2005). Tourist motivations and destination image. Tourism Management, 26(3), 381–394.

Kotler, P., & Keller, K. L. (2016). Marketing Management (15th ed.). Pearson.

Kozak, M., & Decrop, A. (2009). Handbook of Tourist Behavior: Theory & Practice. Routledge.

Lawson, K. (2017). Web Scraping with Python. O’Reilly Media.

Li, X., Zhang, J., & Song, H. (2022a). Measuring post-pandemic tourist sentiment using UGC analytics. Tourism Management Perspectives, 43, 100951.

Li, X., Zhang, J., & Song, H. (2022b). Tourist sentiment in the digital era. Tourism Management Perspectives, 43, 100951.

Liu, C. (2021). Mining tourist experience using text analytics. Tourism Management, 85, 104309.

Liu, C., Tsaur, S.-H., & Yen, C.-H. (2021). Mining tourist experience: Applying text mining to online reviews. Tourism Management, 85, 104309.

Liu, Y., Li, C., & Chen, L. (2021). Digital innovation in tourism: The role of social media analytics. Tourism Management, 82, 104187. https://doi.org/10.1016/j.tourman.2020.104187

Manrai, L. A. (2011). Hofstede’s Cultural Dimensions and Tourist Behavior. Journal of Travel Research, 50(1), 27–45.

Mariani, M., Felice, M., & Mura, M. (2018). Facebook as a destination marketing tool. Journal of Travel & Tourism Marketing, 35(1), 27–39.

Marine-Roig, E., & Clavé, S. A. (2015). Tourism analytics with user-generated content. Tourism Management, 46, 74–85.

Nurdiansyah, N., Eddyono, F., & Sukwika, T. (2024). Analysis of Tour Package Stimulus for Vaccine Recipients in the Pandemic Era Based on Travel Agent’s Perspective. Journal of Applied Management Research, 4(2), 120–132.

Pearce, P. L. (2005). Tourist Behaviour: Themes and Conceptual Schemes. Channel View.

Poria, Y. (2006). Heritage tourists: Linking culture and interpretation. Tourism Management, 27(3), 476–489.

Poria, Y., Butler, R., & Airey, D. (2006). Linking heritage tourists to heritage interpretation: The influence of the visitor’s perspective. Tourism Management, 27(1), 67–74.

Salvador, A. B. (2014). Big Data Usage in the Marketing Information System. Procedia Computer Science, 39, 530–536.

Sangadji, E. M. (2014). Perilaku Konsumen. Andi Publisher.

Schiffman, L. G., & Wisenblit, J. (2019). Consumer Behavior. Pearson.

Sekaran, U., & Bougie, R. (2016). Research Methods for Business (7th ed.). Wiley.

Timothy, D. J., & Boyd, S. W. (2003). Heritage Tourism. Pearson Education.

U.N.W.T.O. (2022). Tourism and Covid-19: Impact and Policy Responses. UNWTO Reports.

Venkatesh, V. (2012). Consumer decision-making in tourism: The role of destination image and motivation. Journal of Consumer Behaviour, 11(5), 423–431.

Xiang, Z., Du, Q., Ma, Y., & Fan, W. (2015). A comparative analysis of major online review platforms. Tourism Management, 51, 15–26.

Zenker, S., & Kock, F. (2020). The coronavirus pandemic – A critical discussion of a tourism research agenda. Tourism Management, 81, 104–164. https://doi.org/https://doi.org/10.1016/j.tourman.2020.104164

Zhao, B. (2017). Web scraping. In Encyclopedia of Big Data. Springer.