Analyzing Instagram Engagement to Forecast Domestic Tourist Trips in Lake Toba and North Sumatra A Dual Approach with Conventional Statistics and Machine Learning Techniques

Main Article Content

Erna Nurmawati
Teguh Sugiyarto
Navika Artiari
Adelina Rahmawati

Abstract

The tourism industry is well known as one booster for economic development. The advance of the tourism industry will lead to the improvement of other economic sectors. Therefore, the Indonesian government is taking steps to ensure the development of its tourism industry by launching 10 super-priority destinations (DSP). Despite numerous efforts and interventions, evidence suggests that the demand for the tourism industry in certain DSPs remains unsatisfied. This also holds true for Lake Toba in North Sumatra. Therefore, it is important to understand how to promote the destination site effectively and increase the number of domestic visitors. This study is aimed at assessing the impact of digital marketing through Instagram to determine the number of domestic tourist trips. The engagement rate (ER) on Instagram posts represents the impact of digital marketing. The result reveals that the topic 'cultural tourism and its activities that develop the economy' has the highest average ER, reaching 692.48. Further analysis reveals that the LSTM model, with independent variables TPK, GTI, and ER on the topic of 'ticket information and vacation packages', is the most effective model for predicting the number of domestic tourist trips to North Sumatra. This analysis emphasizes the crucial role of digital marketing to shape the demand for the tourism industry. The conclusion is based on the significant influence of the Google Trends Index (GTI) and ER on Instagram posts, which serve as a gauge for domestic visitor numbers. The related stakeholders must consider this aspect to sustain its business.

Article Details

Section
Articles

References

Abbasian, S., Onn, G., & Arnautovic, D. (2020). Overtourism in Dubrovnik in the eyes of local tourism employees: A qualitative study. Cogent Social Sciences, 6(1), 1775944. https://doi.org/10.1080/23311886.2020.1775944

Al-Jassim, R. S., Jetly, K., Abushakra, A., & Al Mansori, S. (2022). A review of the methods and techniques used in tourism demand forecasting. EAI Endorsed Transactions on Creative Technologies, 9(4), e1. https://doi.org/10.4108/eetct.v9i31.2986

Alwi, W., & Nurfadilah, K. (2021). Penerapan Metode SARIMA untuk Peramalan Jumlah Pengunjung Wisata Taman Nasional Bantimurung Bulusaraung Maros. JOMTA Journal of Mathematics: Theory and Applications, 3(1), 1–7. https://doi.org/https://doi.org/10.31605/jomta.v3i1.1221

Astiyah, S. (2009). Inflasi (1st ed.). Pusat Pendidikan dan Studi Kebanksentralan. http://www.bi.go.id

Azmi, A. F., & Budi, I. (2018). Exploring practices and engagement of Instagram by Indonesia Government Ministries. In 2018 10th International Conference on Information Technology and Electrical Engineering (ICITEE), 18–21. https://doi.org/10.1109/ICITEED.2018.8534799

Badan Pusat Statistik. (2024). Domestics Tourism Statistics 2023.

Baloch, Q. B., Shah, S. N., Iqbal, N., Sheeraz, M., Asadullah, M., Mahar, S., & Khan, A. U. (2023). Impact of tourism development upon environmental sustainability: a suggested framework for sustainable ecotourism. Environmental Science and Pollution Research, 30(3), 5917–5930. https://doi.org/10.1007/s11356-022-22496-w

Bangwayo-Skeete, P. F., & Skeete, R. W. (2015). Can Google data improve the forecasting performance of tourist arrivals? Mixed-data sampling approach. Tourism Management, 46, 454-464. https://doi.org/10.1016/j.tourman.2014.07.014

Bappenas. (2019). Presidential degree no 52 year 2023: the government work plan 2024. Edisi 11, 12(November), 1–68. https://peraturan.bpk.go.id/Details/234926/perpu-no-2-tahun-2022%0Awww.djpk.depkeu.go.id

Butler, R. (1998). Seasonality in tourism: Issues and implications. The Tourist Review, 53(3), 18–24. https://doi.org/10.1108/eb058278

Camilleri, M. A. (2018). The Tourism Industry: An Overview. In: Travel Marketing, Tourism Economics and the Airline Product. Tourism, Hospitality & Event Management. Springer, Cham. https://doi.org/10.1007/978-3-319-49849-2_1

Diaz-Farina, E., Díaz-Hernández, J. J., & Padrón-Fumero, N. (2020). The contribution of tourism to municipal solid waste generation: A mixed demand-supply approach on the island of Tenerife. Waste Management, 102, 587–597. https://doi.org/10.1016/j.wasman.2019.11.023

Fatanti, M. N., & Suyadnya, I. W. (2015). Beyond User Gaze: How Instagram Creates Tourism Destination Brand?. Procedia - Social and Behavioral Sciences, 211, 1089–1095. https://doi.org/10.1016/j.sbspro.2015.11.145

Fiallos, A., Jimenes, K., Fiallos, C., & Figueroa, S. (2018). Detecting topics and locations on Instagram photos. In 2018 International Conference on eDemocracy & eGovernment (ICEDEG) (pp. 246-250). IEEE. https://doi.org/10.1109/ICEDEG.2018.8372314

Fletcher, J., Fyall, A., Gilbert, D., & Wanhill, S. (2017). Tourism: Principles and practice. Pearson UK.

Foster, I., Ghani, R., Jarmin, R. S., Kreuter, F., & Lane, J. (2016). Big data and social science: A practical guide to methods and tools. Chapman and Hall/CRC.

Giannoulakis, S., & Tsapatsoulis, N. (2016). Evaluating the descriptive power of Instagram hashtags. Journal of Innovation in Digital Ecosystems, 3(2), 114–129. https://doi.org/10.1016/j.jides.2016.10.001

Gössling, S., Scott, D., & Hall, C. M. (2020). Pandemics, tourism and global change: a rapid assessment of COVID-19. Journal of Sustainable Tourism, 29(1), 1-20. https://doi.org/10.1080/09669582.2020.1758708

Hsieh, S. C. (2021). Tourism demand forecasting based on an lstm network and its variants. Algorithms, 14(8). 243. https://doi.org/10.3390/a14080243

Jelodar, H., Wang, Y., Yuan, C., Feng, X., Jiang, X., Li, Y., & Zhao, L. (2019). Latent Dirichlet allocation (LDA) and topic modeling: models, applications, a survey. Multimedia Tools and Applications, 78(11), 15169–15211. https://doi.org/10.1007/s11042-018-6894-4

Kanwal, S., Rasheed, M. I., Pitafi, A. H., Pitafi, A., & Ren, M. (2020). Road and transport infrastructure development and community support for tourism: The role of perceived benefits, and community satisfaction. Tourism Management, 77, 104014. https://doi.org/10.1016/j.tourman.2019.104014

Kaur, G. (2017). The importance of digital marketing in the tourism industry. International Journal of Research-Granthaalayah, 5(6), 72–77. https://doi.org/10.5281/zenodo.815854

Kemenparekraf. (2022). Siaran Pers: Menparekraf: Kekayaan SDA Modal Pengembangan Pariwisata Berkualitas Berkelanjutan Mendukung Kebangkitan Ekonomi. Kemenparekraf. https://www.kemenparekraf.go.id/berita/siaran-pers-menparekraf-kekayaan-sda-modal-pengembangan-pariwisata-berkualitas-berkelanjutan-mendukung-kebangkitan-ekonomi

Kennedy, P. S. J., Tobing, S. J. L., & Toruan, R. L. (2022). Marketing strategy with marketing mix for Lake Toba tourism destination. Journal of Sustainable Tourism and Entrepreneurship (JoSTE), 3(3), 157–174. https://doi.org/10.35912/joste.v3i3.1515

Law, R., Li, G., Fong, D. K. C., & Han, X. (2019). Tourism demand forecasting: A deep learning approach. Annals of Tourism Research, 75, 410-423. https://doi.org/10.1016/j.annals.2019.01.014

Li, H., Hu, M., & Li, G. (2020). Forecasting tourism demand with multisource big data. Annals of Tourism Research, 83, 102912. https://doi.org/10.1016/j.annals.2020.102912

Li, X., Law, R., Xie, G., & Wang, S. (2021). Review of tourism forecasting research with internet data. Tourism Management, 83, 104245. https://doi.org/10.1016/j.tourman.2020.104245

Liburd, J., Duedahl, E., & Heape, C. (2022). Co-designing tourism for sustainable development. Journal of Sustainable Tourism, 30(10), 2298–2317.

Mamirkulova, G., Mi, J., Abbas, J., Mahmood, S., Mubeen, R., & Ziapour, A. (2020). New Silk Road infrastructure opportunities in developing tourism environment for residents better quality of life. Global Ecology and Conservation, 24, e01194. https://doi.org/10.1016/j.gecco.2020.e01194

McKercher, B., & Du Cros, H. (2002). Cultural tourism: The partnership between tourism and cultural heritage management. Routledge.

Murphy, P., & Murphy, A. (2004). Strategic Management for Tourism Communities: Bridging the Gaps. In Strategic Management for Tourism Communities. https://doi.org/10.21832/9781873150856

Pitana, I. G., & Gyatri, P. G. (2005). Sosiologi Pariwisata: Kajian Sosiologi terhadap Struktur, Sistem, dan Dampak-Dampak Pariwisata. Yogyakarta: Andi Offset.

Pitanatri, P. D., & Pitana, I. (2016). Digital Marketing in Tourism: The More Global, The More Personal. In International TourismConference Promoting Cultural & Heritage Tourism. Udayana University

Rahim, F. (2012). Pedoman Kelompok Sadar Wisata (1st ed.). Kemenparekraf.

Riestiansyah, F., Damayanti, D., Reswara, M., & Susetyoko, R. (2022). Perbandingan metode ARIMA dan ARIMAX dalam Memprediksi Jumlah Wisatawan Nusantara di Pulau Bali. Jurnal Infomedia: Teknik Informatika, Multimedia & Jaringan, 7(2), 58–62.

Rödel, E. L. (2017). Forecasting tourism demand in Amsterdam with Google Trends: A research into the forecasting potential of Google Trends for tourism demand in Amsterdam (Master's thesis, University of Twente).

Roxas, F. M. Y., Rivera, J. P. R., & Gutierrez, E. L. M. (2020). Mapping stakeholders’ roles in governing sustainable tourism destinations. Journal of Hospitality and Tourism Management, 45, 387–398. https://doi.org/10.1016/j.jhtm.2020.09.005

Simanjorang, F., Hakim, L., & Sunarti. (2020). Peran Stakeholder Dalam Pembangunan Pariwisata Di Pulau Samosir. Jurnal Profit, 14(1), 42–52. https://doi.org/10.21776/ub.profit.2020.014.01.5

Song, H., & Li, G. (2008). Tourism demand modelling and forecasting—A review of recent research. Tourism Management, 29(2), 203-220. https://doi.org/10.1016/j.tourman.2007.07.016

Suwanto, S. (2020). Hubungan Jumlah Kunjungan Wisatawan Mancanegara dengan Rata-Rata Tingkat Penghunian Kamar Hotel Provinsi DKI Jakarta Tahun 2012-2018. Jurnal Kepariwisataan Indonesia: Jurnal Penelitian Dan Pengembangan Kepariwisataan Indonesia, 14(1), 9–20. https://doi.org/10.47608/jki.v14i12020.9-20

UNSD. (2008). Role of the International Recommendations for Tourism Statistics 2008. In International Recommendations for Tourism Statistics 2008. (pp 5-13). https://doi.org/10.18356/05265168-en

Wanhill, S. (2000). Small and medium tourism enterprises. Annals of Tourism Research, 27(1), 132–147. https://doi.org/10.1016/S0160-7383(99)00072-9

Yulianto, A., Putri, E. D. H., & Wardani, D. M. (2022). Dampak Pandemi COVID-19 Terhadap Jumlah Kunjungan Wisatawan dan Tingkat Hunian Kamar Hotel D.I Yogyakarta. Jurnal Pariwisata, 9(1), 53–63. https://doi.org/10.31294/par.v9i1.12331