Variasi Sentimen Pantai Wisata dari Tweet Berbahasa Indonesia Studi Kasus: Pantai Wisata Di Desa Parangtritis, Kabupaten Bantul

Main Article Content

Arief Wicaksono
Nurul Khakhim
Nur Mohammad Farda

Abstract

Twitter menjadi wadah bagi netizen untuk menyampaikan pendapat dan perasaannya terhadap situasi yang terjadi di masyarakat, termasuk fenomena pembatasan berkerumun dan bepergian untuk wisata. Analisis sentimen menjadi pendekatan untuk memperoleh, mengubah, dan menginterpretasi pendapat netizen dalam tweet mengenai pantai wisata. Penelitian ini mengkaji ketersediaan data Twitter untuk analisis variasi sentimen pantai wisata di Desa Parangtritis, Kabupaten Bantul pada tiga periode analisis, yaitu sebelum Covid-19, selama penutupan lokasi wisata, dan setelah pembukaan kembali lokasi wisata. Crawling tweet dilakukan dengan menjalankan script Python GetOldTweets. Kata kunci pencarian tweet menggunakan nama pantai yaitu Pantai Parangtritis, Parangkusumo, Cemara Sewu, Pelangi, dan Depok. Analisis sentimen dilakukan dengan metode lexicon-based menggunakan kosa kata positif dan negatif berbahasa Indonesia yang disusun oleh masdevid. Kata dominan pada tweet setiap pantai wisata divisualisasikan dengan wordcloud. Tweet yang digunakan untuk analisis hanya sebanyak 4.848 tweet (25,64%) dan tidak satupun memuat informasi koordinat. Isi tweet bervariasi mulai dari ciri khas, daya tarik wisata, kenangan netizen, serta fenomena yang terjadi di pantai wisata. Sentimen semua pantai wisata, selain Pantai Parangkusumo, pada tiga periode analisis bervariasi dan cenderung memiliki sentimen negatif setelah pembukaan wisata. Pantai Parangkusumo selalu memiliki sentimen positif pada tiga periode analisis.

Article Details

Section
Articles

References

Alamanda, D. T., Kania, I., Ramdhani, A., Susilawati, W., & Hadi, E. S. (2019). Sentiment analysis using text mining of Indonesia tourism reviews via social media. International Journal of Humanities, Arts and Social Sciences, 5(2), 43–53.

Alonso-Almeida, M. del M., Borrajo-Millán, F., & Yi, L. (2019). Are social media data pushing overtourism? The case of Barcelona and Chinese Tourists. Sustainability, 11(12), 1–17. https://doi.org/10.3390/SU11123356

Andersson, E., & Öhman, J. (2017). Young people’s conversations about environmental and sustainability issues in social media. Environmental Education Research, 23(4), 465–485. https://doi.org/10.1080/13504622.2016.1149551

Basant, A., Mittal, N., Bansal, P., & Garg, S. (2015). Sentiment Analysis Using Common-Sense and Context Information. Computational Intelligence and Neuroscience. 2015, 715730, 1-9. https://doi.org/10.1155/2015/715730

Batrinca, B., & Treleaven, P. C. (2014). Social media analytics: a survey of techniques, tools and platforms. AI and Society, 30(1), 89–116. https://doi.org/10.1007/s00146-014-0549-4

BPS Kabupaten Bantul. (2020). Kabupaten Bantul Dalam Angka 2020. Bantul: BPS Kabupaten Bantul.

Briassoulis, H. (2002). Sustainable tourism and the question of the commons. Annals of Tourism Research, 29(4), 1065–1085. https://doi.org/10.1016/S0160-7383(02)00021-X

Camprubí, R., Guia, J., & Comas, J. (2013). The new role of tourists in destination image formation. Current Issues in Tourism, 16(2), 203–209. https://doi.org/10.1080/13683500.2012.733358

Conrady, R. (2007). Travel technology in the era of Web 2.0. In R. Conrady & M. Buck (Eds.), Trends and Issues in Global Tourism 2007 (pp. 165–184). https://doi.org/10.1017/CBO9781107415324.004

Dinas Pariwisata DIY. (2019). Statistik Kepariwisataan 2018. Yogyakarta: Dinas Pariwisata DIY.

Drus, Z., & Khalid, H. (2019). Sentiment analysis in social media and its application: systematic literature review. Procedia Computer Science, 161, 707–714. https://doi.org/10.1016/j.procs.2019.11.174

Fang, B., Ye, Q., Kucukusta, D., & Law, R. (2016). Analysis of the perceived value of online tourism reviews: Influence of readability and reviewer characteristics. Tourism Management, 52, 498–506. https://doi.org/10.1016/j.tourman.2015.07.018

Fatyanosa, T. N., & Bachtiar, F. A. (2018). Classification method comparison on Indonesian social media sentiment analysis. Proceedings - 2017 International Conference on Sustainable Information Engineering and Technology, SIET 2017, 310–315. https://doi.org/10.1109/SIET.2017.8304154

Hall, C Michael, & Page, S. J. (2006). The Geography of Tourism and Recreation: Environment, Place and Space. In (Geography of tourism). (3rd ed.). New York: Routledge.

Hort, M., Zhang, C., Shingjergji, K., Igneczi, M., & Habib, M. (2019). Tourists Mobility on Social Media. Retrieved from Computd website: https://computd.nl/wp-content/uploads/2019/12/Tourists_Mobility_on_Social_Media-1.pdf

Ikoro, V., Sharmina, M., Malik, K., & Batista-navarro, R. (2018). Analyzing Sentiments Expressed on Twitter by UK Energy Company Consumers. 2018 5th International Conference on Social Networks Analysis, Management and Security, SNAMS 2018, 95–98.

Medhat, W., Hassan, A., & Korashy, H. (2014). Sentiment analysis algorithms and applications: A survey. Ain Shams Engineering Journal, 5(4), 1093–1113. https://doi.org/10.1016/j.asej.2014.04.011

Pavalanathan, U., & Einstein, J. (2015). Comfounds and Consequences in Geotagged Twitter Data. Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, 2138–2148. https://doi.org/10.18653/v1/D15-1256

Philander, K., & Zhong, Y. Y. (2016). Twitter sentiment analysis: Capturing sentiment from integrated resort tweets. International Journal of Hospitality Management, 55, 16–24. https://doi.org/10.1016/j.ijhm.2016.02.001

Ragini, J. R., Anand, P. M. R., & Bhaskar, V. (2018). Big data analytics for disaster response and recovery through sentiment analysis. International Journal of Information Management, 42(September 2017), 13–24. https://doi.org/10.1016/j.ijinfomgt.2018.05.004

Raj, S., & Kajla, T. (2018). Tourism analytics: social media analytics framework for promoting Asian tourist destinations using big data approach. Journal of Global Business Advancement, 11(1), 26–27.

Ramanathan, V., & Meyyappan, T. (2019). Twitter text mining for sentiment analysis on people’s feedback about Oman tourism. 2019 4th MEC International Conference on Big Data and Smart City, ICBDSC 2019, 1–5. https://doi.org/10.1109/ICBDSC.2019.8645596

Rhosadi, I. (2019). Analisis Big Data Twitter dalam Kajian Tanggap Darurat Bencana: Pola Spasial, Kualitas dan Klasifikasi Informasi. Tesis. Yogyakarta: Magister Ilmu Lingkungan, Sekolah Pascasarjana, Universitas Gadjah Mada.

Roberts, H. V. (2017). Using Twitter data in urban green space research: A case study and critical evaluation. Applied Geography, 81, 13–20. https://doi.org/10.1016/j.apgeog.2017.02.008

Song, Z., & Xia, J. C. (2016). Spatial and temporal sentiment analysis of Twitter data. In C. Capineri, M. Haklay, H. Huang, V. Antoniou, J. Kettunen, F. Ostermann, & R. Purves (Eds.), European Handbook of Crowdsourced Geographic Information (pp. 205–221). London: Ubiquity Press.

Statista. (2017). Number of Twitter Users in Indonesia from 2014 to 2019 (in millions). Diakses dari https://www.statista.com/statistics/490548/twitter-users-indonesia/

Statista. (2019a). Number of Sina Weibo users in China from 2017 to 2021(in millions). Diakses dari https://www.statista.com/statistics/941456/china-197 number-of-sina-weibo-users/

Statista. (2019b). Penetration of leading social networks in Indonesia as of 3rd quarter 2019. Diakses dari https://www.statista.com/statistics/284437/indonesia-social-network-penetration/

Statista. (2019c). TripAdvisor - Statistics & Facts. Diakses dari https://www.statista.com/topics/3443/tripadvisor/

Statista. (2019d). Twitter: number of monthly active users 2010-2019 Published by J. Clement, Aug 14, 2019 How many people use Twitter? As of the first quarter of 2019, Twitter averaged 330 million monthly active users, a decline from its all-time high of 336 MAU in the fir. Diakses dari https://www.statista.com/statistics/282087/number-of-monthly-active-twitter-users/

Stock, K. (2018). Mining location from social media: A systematic review. Computers, Environment and Urban Systems, 71, 209–240. https://doi.org/10.1016/j.compenvurbsys.2018.05.007

Xiang, Z., Du, Q., Ma, Y., & Fan, W. (2017). A comparative analysis of major online review platforms: Implications for social media analytics in hospitality and tourism. Tourism Management, 58, 51–65. https://doi.org/10.1016/j.tourman.2016.10.001

Xu, X., & Li, Y. (2016). The antecedents of customer satisfaction and dissatisfaction toward various types of hotels: A text mining approach. International Journal of Hospitality Management, 55, 57–69. https://doi.org/10.1016/j.ijhm.2016.03.003

Zou, L., Lam, N. S. N., Cai, H., & Qiang, Y. (2018). Mining Twitter Data for Improved Understanding of Disaster Resilience. Annals of the American Association of Geographers, 108(5), 1422–1441.